Algebraic properties of bounded killing vector fields

نویسندگان

چکیده

In this paper, we consider a connected Riemannian manifold $M$ where Lie group $G$ acts effectively and isometrically. Assume $X\in\mathfrak{g}=\mathrm{Lie}(G)$ defines bounded Killing vector field, find some crucial algebraic properties of the decomposition $X=X_r+X_s$ according to Levi $\mathfrak{g}=\mathfrak{r}(\mathfrak{g})+\mathfrak{s}$, $\mathfrak{r}(\mathfrak{g})$ is radical, $\mathfrak{s}=\mathfrak{s}_c\oplus\mathfrak{s}_{nc}$ subalgebra. The coincides with abstract Jordan $X$, unique in sense that it does not depend on choice $\mathfrak{s}$. By these properties, prove eigenvalues $\mathrm{ad}(X):\mathfrak{g}\rightarrow\mathfrak{g}$ are all imaginary. Furthermore, when $M=G/H$ homogeneous space, can completely determine fields induced by vectors $\mathfrak{g}$. We space fields, or equivalently $\mathfrak{g}$ for $G/H$, compact subalgebra, such its semi-simple part ideal $\mathfrak{c}_{\mathfrak{s}_c}(\mathfrak{r}(\mathfrak{g}))$ $\mathfrak{g}$, Abelian sum $\mathfrak{c}_{\mathfrak{c}(\mathfrak{r}(\mathfrak{g}))} (\mathfrak{s}_{nc})$ two-dimensional irreducible $\mathrm{ad}(\mathfrak{r}(\mathfrak{g}))$-representations $\mathfrak{c}_{\mathfrak{c}(\mathfrak{n})}(\mathfrak{s}_{nc})$ corresponding nonzero imaginary weights, i.e. $\mathbb{R}$-linear functionals $\lambda:\mathfrak{r}(\mathfrak{g})\rightarrow \mathfrak{r}(\mathfrak{g})/\mathfrak{n}(\mathfrak{g}) \rightarrow\mathbb{R}\sqrt{-1}$, $\mathfrak{n}(\mathfrak{g})$ nilradical.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic-killing Vector Fields *

In this paper we consider the harmonicity of the 1-parameter group of local infinitesimal transformations associated to a vector field on a (pseudo-) Riemannian manifold to study this class of vector fields, which we call harmonic-Killing vector fields.

متن کامل

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

On the existence of Killing vector fields

In covariant metric theories of coupled gravity-matter systems the necessary and sufficient conditions ensuring the existence of a Killing vector field are investigated. It is shown that the symmetries of initial data sets are preserved by the evolution of hyperbolic systems.

متن کامل

Localization formulas about two Killing vector fields

In this article, we will discuss the smooth (XM+ √ −1YM )-invariant forms on M and to establish a localization formulas. As an application, we get a localization formulas for characteristic numbers. The localization theorem for equivariant differential forms was obtained by Berline and Vergne(see [2]). They discuss on the zero points of a Killing vector field. Now, We will discuss on the points...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Journal of Mathematics

سال: 2021

ISSN: ['1093-6106', '1945-0036']

DOI: https://doi.org/10.4310/ajm.2021.v25.n2.a4